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This paper describes early elementary school children’s responses to additive problems 
when using paper and pencil representations, specifically when using a table. We explore 
the following research question: In what ways do tables influence young students’ (Grades 1-3; 
ages 6-8) accuracy and ability to work with additive problems including identifying unknowns 
and components of the problems? Children from a public school in a diverse suburb of the 
Northeast of the United States were interviewed individually. Each child was presented 
with six additive problems taken from Vergnaud’s (1982) work. We designed three repre-
sentational contexts (plain paper and pencil, unlabeled tables or labeled tables), to which 
children were randomly assigned. We highlight three findings from this study. First, our 
data emphasize that what children can do depends on the problem context and the tools 
available to them. Second, our data illustrate how some representations help children with 
problems that involve a composition of two transformations, but not necessarily with pro-
blems of transformation between two measures. Moreover, children are able to respond to 
some problems more successfully when they are able to engage with them through the use 
of specific representations. Third, some representations facilitate an explicit attention to 
types of quantities and problem structure. Implications for instruction are also discussed.
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El uso de tablas entre niños en los primeros grados de escolaridad mientras 
resuelven problemas aditivos de Vergnaud
Este artículo describe las respuestas de niños de escuela primaria a problemas aditivos cuando 
usan representaciones con papel y lápiz, específicamente cuando usan una tabla. Exploramos la 
siguiente pregunta de investigación: ¿De qué manera influyen las tablas en la precisión y la capacidad 
de los niños pequeños (primer a tercer grado de primaria; 6 a 8 años) para trabajar con problemas aditivos, 
incluida la identificación de incógnitas y componentes de los problemas? Se entrevistó individualmente a 
niños de una escuela pública en un suburbio diverso del noreste de los Estados Unidos. A cada niño 
se le presentaron seis problemas aditivos tomados del trabajo de Vergnaud (1982). Diseñamos tres 
contextos representacionales (hoa en blanco, tablas sin etiquetas y tablas con etiquetas), a los 
que se asignaron niños de forma aleatoria. Destacamos tres resultados de este estudio. Primero, 
nuestros datos enfatizan que lo que los niños pueden hacer depende del contexto del problema 
y de las herramientas que los estudiantes tienen a su disposición. En segundo lugar, nuestros 
datos ilustran cómo algunas representaciones ayudan a los niños con problemas que incluyen una 
composición de dos transformaciones pero no necesariamente con problemas de transformación 
entre dos medidas. Además, los niños pueden responder a algunos problemas con mayor éxito 
cuando pueden interactuar con ellos mediante el uso de representaciones específicas. En tercer 
lugar, algunas representaciones facilitan una atención explícita a los tipos de cantidades y a la 
estructura del problema. También discutimos implicancias para la enseñanza de las matemáticas.

Palabras-claves: matemáticas primarias, problemas aditivos, representaciones

Utilisation des tableaux par les enfants du début de l’école élémentaire  
qui résolvent les problèmes additifs de Vergnaud
Cet article décrit les réponses de jeunes enfants du primaire aux problèmes additifs qu’ils 
résolvent à l’aide de représentations papier-crayon, en particulier avec l’utilisation d’un tableau. 
Nous explorons la question de recherche suivante : de quelle manière les tableaux influencent-ils 
la précision et la capacité des jeunes élèves (de la 1re à la 3e année d’école élémentaire, âgés de 6 
à 8 ans) à résoudre des problèmes additifs, notamment en identifiant les inconnues et les com-
posantes des problèmes ? Des enfants d’une école publique située dans une banlieue diversifiée 
du nord-est des États-Unis ont été interrogés individuellement. Chaque enfant s’est vu présenter 
six problèmes additifs tirés des travaux de Vergnaud (1982). Nous avons conçu trois contextes 
de représentation (avec une feuille de papier vierge, avec un tableau sans étiquette ou avec un 
tableau étiqueté), auxquels les enfants ont été assignés au hasard. Nous obtenons trois  résul-
tats. Premièrement, nos données soulignent que, ce que les enfants peuvent faire dépend du 
contexte du problème et des outils dont ils disposent. Deuxièmement, nos données illustrent 
comment certaines représentations aident les enfants à résoudre les problèmes de type « com-
position de deux transformations », mais pas nécessairement les problèmes de « transformation 
de mesures ». De plus, les enfants sont capables de répondre avec plus de succès à certains pro-
blèmes lorsqu’ils sont capables de s’y engager grâce à l’utilisation de représentations spécifiques. 
Troisièmement, certaines représentations favorisent une attention explicite aux types de quanti-
tés et à la structure du problème. Les implications pour l’enseignement sont également discutées.

Mots-clés : mathématiques élémentaires, problèmes additifs, représentations
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Background and rationale
In this paper, we focus on young children’s work with additive problems when using 
tables. We argue that children’s abilities are dynamic and contextual. Instead of empha-
sizing what children can and cannot do, we specifically focus on what children can do as 
dependent on a context that is defined according to the structure and complexity of the 
problems presented to them and the representations, in this case tables, they use. We pro-
vide evidence from an exploratory study with children in Grades 1 through 3 (approxi-
mately 6-8 years of age) and explore the following research question: In what ways do tables 
influence young students’ accuracy and ability to work with additive problems including identifying 
unknowns and components of the problems?

To answer this question, we build on Vergnaud and Durand’s work (1976) and further 
investigate the differences between two categories of additive relationships (state—trans-
formation—state [STS] and transformation—transformation —transformation [TTT]) to com-
pare how children use tables in the two different problem contexts. We focus on tables 
because we view them as an important, and at the same time understudied, way for child-
ren to organize and represent their ideas. We also note that tables are a familiar represen-
tation that are used throughout elementary school. Thus, we view them as a tool that is 
already in children’s “toolboxes,” and not as a new representation. In our prior work we 
have found that tables served as an organizational tool that supported students, ages five 
to nine, in problem solving in the context of algebra (Brizuela & Alvarado, 2010; Brizuela 
et al., 2021; Brizuela & Lara-Roth, 2002). For example, tables can help students organize 
co-varying quantities (e.g., (1, 2), (2, 4), and so on for the relationship y = 2x).

Children’s understandings and construction of additive 
structures
Piaget’s work (1970), as well as other work in mathematics education that has built on 
his research (Kamii, 1985, 1989; Steffe et al., 1988; Carpenter et al., 1989; Ginsburg, 
1977; Vergnaud, 1982), have detailed both the natural abilities of young children as well 
as the ways in which their initial understandings about number, quantities, mathematical 
properties, and mathematical relationships, for instance, build on each other through pro-
cesses of empirical and reflective abstraction (Piaget, 1977). In this paper, given that our 
starting point was the work of Vergnaud on additive structures (1982), a constructivist 
framework was fundamental.

Vergnaud’s (1982) classification of problems in the conceptual field of additive struc-
tures, as well as his description of children’s ability to deal with these different kinds of 
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problems, set the stage for our study. Vergnaud described six basic categories of additive 
relationships among quantities, each with several subcategories. In this paper, we focus 
on the two categories—STS and TTT—for which Vergnaud provides us with empirical 
results specific to young children. STS relationships involve a transformation operating on 
a measurement and resulting in a new measurement, while TTT relationships involve two 
transformations that are composed into a third transformation (Vergnaud, 1982).

In his 1982 paper, Vergnaud reported on a study he conducted with Durand (1976) in 
which they examined differences between a transformation between two measures (STS) 
and a composition of two transformations (TTT). In their 1976 study, Vergnaud and 
Durand described STS problems as accessible and TTT problems as more challenging. 
Thus, we used STS problems as a baseline to assess our participants’ engagement with 
additive structures. Vergnaud and Durand found that correct responses in both STS and 
TTT problems increased, in general, with age.

Much of the work on additive structures (Carpenter et  al., 2003; Vergnaud, 1982; 
Vergnaud & Durand, 1976) illuminates children’s strategies without looking at represen-
tational supports, and much of the research that does explore the role of supports invol-
ves the use of manipulatives, or artifacts that students can handle (see Clements, 2000 for 
a summary of this work). In his 1982 paper, Vergnaud did not describe providing children 
with, or requesting children to produce, representations for solving problems. However, 
he did propose two criteria for the efficiency of “symbolic representations” (p. 53). The 
first is “symbolic representations should help students to solve problems that they would 
otherwise fail to solve” and the second is that “symbolic representations should help stu-
dents in differentiating various structures and classes of problems” (p. 53). Vergnaud also 
highlighted that “these criteria should be used to evaluate different sorts of symbolic sys-
tems, at different stages of the acquisition of additive structures” (p. 53). His proposal was 
that we should take the time to examine different symbolic systems and see what they can 
symbolize correctly, their limits, and their advantages and inconveniences. Our research 
question for this study is related to Vergnaud’s proposal as we explore the ways in which 
tables influence children’s thinking about different additive relationships.

Literature Review
Vergnaud (1982) described an intervention study with 11- to 13-year-old children on a 
variety of additive problems in which they used both equations and arrow diagrams to 
solve additive problems. At the time of the post-test, only a few students were able to use 
equations correctly after the intervention, but about 40% of them were able to use arrow 
diagrams correctly to solve the problems. The results of the experiment led Vergnaud to 
argue that arrow diagrams may be more appropriate at this age than equations for the 
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solution of problems. Vergnaud (1982) also presented Euler-Venn diagrams, transforma-
tion diagrams, algebraic equations, vector diagrams, and distance diagrams.

In our study, we worked with younger children (Grades 1 through 3, or ages 6-8), and we 
did not include an intervention component; but, as Vergnaud did, we wanted to unders-
tand what associations there might be between different uses of tables and children’s 
approaches to different kinds of additive relationships.

We consider tables symbolic representations and define symbolic representations in the 
same way as Vergnaud. He explained they “stand for objects of different mathematical 
status: elements, operations, relationships, classes, functions… Of course, there may be 
different sets of symbols referring to different (or to the same) set of objects” (Vergnaud, 
1979, p. 268). We also view tables as tools and rely on Hiebert et al.’s (1997) definition of 
tools. They said tools “help students do things more easily or help students do things they 
could not do alone […] can enable some thoughts that would hardly be possible without 
them” (p. 53). Before describing tables specifically, we review prior research on represen-
tations and tools for working with additive problems.

Tools for working with additive relationships
Research on additive relationships fits into two paradigms: operational and relational 
(Polotskaia & Savard, 2018). The operational paradigm is focused on “arithmetic opera-
tions and calculation strategies,” while the relational paradigm is focused on “quantita-
tive relationships and modeling” (Polotskaia & Savard, 2018, p. 72). Vergnaud’s (1982) 
descriptions and representations of additive structures are focused on identifying states, 
transformations, and measurements; his approach closely attends to operations, and thus 
fits into the operational paradigm.

Researchers have advocated for the different approaches or some combination of them for 
various reasons. In general, one is not better than the other, they are simply different ways 
of interpreting additive structures. For example, an operational approach can support stu-
dents to understand operations as processes (Nesher et al., 1982), which might help them 
to relate operations and inverse operations. Carpenter and his colleagues (1989, 1996) 
did not refer to their approach to teaching arithmetic problems as operational, and they 
certainly considered quantities and incorporate modeling, but we describe their work as 
one example of arithmetic problem categorization that is organized around operations, 
and thus operational. In their work they mapped addition and subtraction to the concepts 
of joining and separating, respectively, to support students in identifying the appropriate 
operation in a word problem. On the other hand, a relational approach can help students 
attend to the relationships between the quantities in the problem.
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Specific representations illustrate different aspects within each paradigm. We begin by 
focusing on the bar method, a representation that supports a relational view of addi-
tive problems (Murata, 2008; Ng & Lee, 2005, 2009; Thirunavukkarasu & Senthilnathan, 
2014). Polotskaia and Savard (2018) and several other researchers have studied how this 
representation can support students in solving additive problems. In this method, stu-
dents begin by drawing a simple rectangle bar, or in some cases bars, and labeling quanti-
tative parts of the bar(s) to represent the problem (Kaur, 2019).

Kaur (2019) described three types of bar representations: part-whole representations, 
comparison representations, and change representations. The part-whole, or some-
times referred to as the part-part-whole, representation, “helps students work through 
word-problems that involve relationships between the whole and its parts” (Kaur, 2019, 
p. 153). The comparison representation helps students determine the difference between 
two quantities, and the change representation “shows the relationship between the new 
value of a quantity and its original value after an increase or a decrease” (Kaur, 2019, 
p. 156).

Kaur and others’ work (Murata, 2008; Ng & Lee, 2005, 2009; Thirunavukkarasu & 
Senthilnathan, 2014) has shown that the bar method supports students in solving addition 
problems. The caveat is that the bar method is specific to arithmetic and not otherwise 
introduced to students, whereas other tools, such as tables, are introduced in multiple 
mathematical and non-mathematical contexts, and are therefore socially ubiquitous.

Here we summarize Vasconcelos’s work (1998), who carried out an investigation that 
involved the use of some of Vergnaud’s additive problems, within the operational para-
digm, in didactical situations and included the use of three different representations: 
Vergnaud’s diagrams (1982), Riley et  al.’s (1983) part-whole diagrams (Figure 1) and 
manipulatives.

As with Kaur (2019), the students in Vasconcelos’ study (1998) participated in an inter-
vention. Vasconcelos had three groups of 8-year-old students, one for each representa-
tion. Each group was provided with a pre-test, a teaching intervention and a post-test. 
The intervention consisted of solving addition and subtraction problems using one of 
three different representations: diagrams, part-whole diagrams and manipulative mate-
rials. Figure 1 shows the representations that Vasconcelos (1998) provided for students 
when reasoning about this problem: Carlos collects keychains. Carlos had 8 keychains. His 
mother gave him 6 keychains. How many keychains does Carlos have now?
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Figure 1. – Vergnaud’s (1982, left) and Riley et al.’s (1983, right) examples  
of representations for 8 + 6 = x as shown in Vasconcelos (1998, p. 66)

Vasconcelos (1998) found that while all three groups showed increases in the number of 
correct responses from pre- to post-test, it was those children using Vergnaud’s diagrams 
who were able to achieve the greatest increases in the number of correct responses, and 
the group that used manipulative materials achieved the smallest increase in the number 
of correct responses. Vasconcelos concluded that the three different tools that she used 
in her research were not equally effective. Vasconcelos’ findings resonate with Vergnaud’s 
point about how some representations may be more helpful for students than others and 
our framing of the affordances of tools as linked to the student, tool, and context. In 
addition, depending on how the students used the representations they may be illustrating 
aspects of the relational or operational paradigm (Polotskaia & Savard, 2018).

Willis and Fuson (1988) drew similar conclusions about students’ use of four representa-
tions, which they refer to as schematic drawings, that were selected by the researchers and 
paired with specific addition and subtraction problem types. Their representations were 
the same as the ones used by Vasconcelos (1998) and shown in Figure 1. However, they did 
not use manipulatives, and they added descriptors, such as “start,” “change,” “part,” or “all” 
to the word problem that was being modeled in the representation. That is, they used the 
representations shown in Figure 1 but added “S” above the rectangle containing eight to 
indicate that was the “start” quantity. They added “C” above the circle containing plus six 
to indicate that was the “change” quantity. To describe the right side of Figure 1, Willis and 
Fuson (1988) referred to “part” and “all.” In the representation shown on the right side of 
Figure 1, eight and six are both parts and had “P” above them, while the missing quantity 
had “A” to indicate “all.”

Willis and Fuson’s (1988) goal was to see if these diagrams supported students in solving 
the problems. Similar to Kaur (2019) and Vasconcelos (1998), they carried out an inter-
vention because students had not yet been introduced to these kinds of representations. 
Based on the pre- and post-test results, the intervention proved successful in teaching 
students how to solve the problems. However, their findings show that sometimes the 
representations supported students in correctly solving the problems, while other times 



RDM 44(2) • 2024

92

students were using the diagrams incorrectly or selecting the incorrect diagram for the 
problem type. One main takeaway was that students struggled to solve the subtraction 
problems. We hypothesize this finding might indicate more about the representation than 
about the problem type or student. Perhaps, the representations used to model the sub-
traction problems were not helpful for some, if not most, students because the represen-
tations neither highlighted the operation that should be used to solve the problem nor the 
relationships between the quantities.

Tables as tools for representing mathematical relationships
We argue that tables can align with both the relational and operational paradigms, depen-
ding on how students interpret them and the problem context. In the case of additive 
problems, a table, labeled or unlabeled, is a space for students to organize quantities. The 
students might organize the quantities in a way that highlights the relationship between 
them, or the students might organize the quantities in a way that brings the operation to 
the forefront. Tables are commonly found in elementary mathematics curriculum, and 
while other representations, such as the bar model, may be fruitful ways to show mathe-
matical ideas, they are also new to most students.

Before we explore how new representations may support students’ learning, we first aim 
to understand the role of existing, broadly used representations. As a first step, we were 
curious to know what students might do, and how tables might support or hinder them 
in solving additive problems. A few studies have explored tables as tools, mainly in the 
context of early algebra, and the general consensus is that tables support students’ mathe-
matics learning. Here we summarize some of that work.

Brizuela et al. (2021) found that after participating in a classroom teaching experiment 
(CTE), Max, a 5-year-old student, could use tables as an organizational tool and to gene-
ralize about functional relationships. Through the CTE, Max interacted with tables in 
various forms including using them to organize co-varying quantities and make obser-
vations about patterns and relationships among those quantities. Brizuela and Lara-Roth 
(2002) also investigated students’ use of tables, without the instructional aspect of the 
Brizuela et al. (2021) study and found that without instruction on constructing or using 
a table, 7-year-old students could use tables to solve problems of an algebraic nature. 
Additionally, students self-generated tables with no imposed structure.

Schliemann et  al. (2007) also structured tables to encourage children to attend to the 
functional relationships between quantities. In their study, the tables presented to the 
students had incomplete cells. Children had to complete the table following the same 
function that explained the relationship between other numbers already present in the 
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table. By including in the tables presented to students numbers in the input column that 
were not in an ordered sequence or that skipped over numbers in a sequence, children 
were discouraged from simply going down input and output columns to find the patterns 
of numbers that worked, and instead focused on the function that led the quantity in the 
input column to transform into the quantity in the output column. Similar to our work, 
the tables in Schliemann et al.’s (2007) study were structured as tools that could allow 
children to explore relationships among quantities.

Martí (2009) considered the use of tables among students in Grades 2 and 5 in contexts 
that are more general than algebra, involving organizing sets of data. He found that, “the 
process of table construction can change the subject’s prior knowledge” (p. 145). Martí 
found that when asked to note a set of categorical data, Grade 2 children never used a 
table spontaneously, and tables were rarely used by Grade 5 children. Martí argued that 
primary school children need to be introduced to tasks in which knowledge is expressed 
in different forms and that require different representations “suited to the demands of 
the task” (p.  147). He also noted that interpreting tables is cognitively different from 
constructing and using tables, a distinction that is relevant to our study because with one 
group of students we scaffolded the construction of tables by providing labels.

Figure 2. – Gabriela’s written work for Bruno (y – 7 = 3; TTT) problem
Brizuela & Alvarado, 2010, p. 43.



RDM 44(2) • 2024

94

Brizuela and Alvarado (2010) highlighted as noteworthy Gabriela’s unprompted construc-
tion of a table to support her in correctly solving the two TTT problems presented to her. 
Before starting both problems, Gabriela drew a line down the middle of her paper and 
organized her right column into three labeled sections, each for one quantity in the pro-
blem. Figure 2 shows her response to a TTT problem in which students find a, knowing b 
and c. The problem could be expressed algebraically as y – 7 = 3 (Problem 6 from Table 1). 
Here she used the labels “st” (for Start), “wn” (for win), “eD” (for end), and “Lt” (for Lost). 
She drew 7 marbles in the “Lt” cell, and then drew 3 marbles in the “eD” cell. After doing 
this, she added 7 and 3, said the answer was 10, and drew 10 marbles in the “st” cell. While 
this student may have used “st” to represent a transformation instead of a state, we view 
this as a productive representation, for this student, in this problem context.

The authors noted that Gabriela’s representations were a welcome surprise since, 
unbeknownst to her, her representations reflected the study design by including a table 
and labels even though she had only been provided with plain paper and pencil. Her 
representation provided a structure for the problem and seemed to support her in atten-
ding to the kinds of quantities involved in the problem, which aligns with the operational 
paradigm.

Brizuela and Alvarado (2010) focused exclusively on correct and incorrect responses 
among the Grade 1 students and reported that for STS problems, which are simpler, 
Grade 1 children had a higher rate of success when they were able to solve them orally, 
without using a table. However, for TTT problems, which are more complex, children 
performed better when they were given the opportunity to produce a table than when 
they had to solve the problems orally. These initial findings motivated us to further analy-
ze our data and understand the affordances of tables. In this paper, we include data from 
Grades 2 and 3 as well as Grade 1, in addition to the frequency of correct and incorrect 
responses.

Rationale for studying the affordances of tables
We focus on tables because very few studies have presented students with tables as a 
support for solving additive problems, and we were curious to explore the affordances 
of tables in the context of an additive problem. We were curious about tables, specifical-
ly, because they are one of the first canonical mathematical representations with which 
students are presented. Tables are one of the representations that continuously resurface 
in students’ K-12 education, beyond just mathematics education, so students use and 
experience them in a variety of school contexts. Tables appear in non-school contexts as 
well–they are a ubiquitous tool, used in a variety of contexts and in the general media, yet 
we know very little about how students use them to solve additive problems.
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We also focus on tables because we view them as a way to organize additive problems that 
supports us in understanding what components students are attending to. This approach 
aligns with the operational paradigm (Polotskaia & Savard, 2018). Seeing what compo-
nents of a problem students are attending to helps us understand their thinking, but it also 
allows us to see if students’ views of the structure of additive problems parallels that of 
Vergnaud (1982). That is, do tables support students in organizing transformations and 
states of additive problems?

We focus on tables instead of other representations, such as arrow diagrams (Vergnaud, 
1982) or bar representations (Kaur, 2019), because in order to set up a table, students 
do not need to determine how quantities are related or to map the quantities to another 
representation, such as a number line. Our focus was on the initial process of solving an 
additive problem and to better understand when and how students identify quantities in 
additive problems. Also, as noted, students are introduced to tables in other mathematical 
and non-mathematical contexts. Thus, we assume they are more familiar than an arrow 
diagram or bar representation, for instance.

Additionally, we used 4×2 tables because they provide a structure that aligns well with 
STS and TTT problems. Specifically, the two columns can be used two different ways. 
Students could either reason about a transformation, thinking of the two columns as 
spaces to show “before” and “after,” or students could use one column for labels and the 
other column for quantities corresponding to those labels. In the labeled table context, 
we provided students with a table that mirrored the latter. We understand there are diffe-
rent ways to represent these problems with or without tables, but selected this approach 
because it was mathematically sound, organized, and relied on a representation that is 
commonly used by elementary students.

We specifically investigated the affordances of tables. An “affordance refers to whatever it 
is about the environment that contributes to the kind of interaction that occurs” (Greeno, 
1994, p. 338). We understand an affordance not as a property of a tool but as a property of 
the interaction between children (in our case) and tools (Gibson, 1977). The affordances 
we aimed to uncover result from students, with specific prior experiences, interacting 
with a table in a certain problem context. We make this distinction because it addresses 
the constructivist underpinnings of this study as this perspective on affordances accounts 
for children’s prior experiences.

Vergnaud’s (1982) claim that representations can support students in solving additive 
problems, coupled with our prior observations of students using tables to organize data, 
motivated us to further study students’ use of tables with a larger group of students using 
additive problems. We relied on Vergnaud’s framework for categorizing problems because 
it supported us in understanding the different components of these additive problems and 



RDM 44(2) • 2024

96

how a problem might be decomposed and represented in a table; it also helped us catego-
rize problems according to their complexity.

Method
Data collection
A total of 45 children (22 Grade 1, 12 Grade 2, and 11 Grade 3) from a public school in 
a diverse suburb in the Northeast of the United States (US) were interviewed individually 
during the first semester in the school year. Each interview lasted around 20 minutes 
and all interviews were videotaped. Children could take as long as they needed on each 
problem. We also collected all written productions. The written productions and trans-
cripts were the primary data source; however, the video recordings were referenced if 
clarification was needed.

Each step in the problem was read to each child. After each step, children were asked, 
“Could you show this on your paper/on your table?”. So, for instance, in Problem 3 in 
Table 1, children were told, “Bernardo plays marbles. He loses 7 marbles. Could you 
show this on paper/on your table? [Waiting for children to show something on paper/on 
the table.] At the end of the game, he has 3 marbles. Could you show this on paper/on 
your table? [Waiting for children to show something on paper/on the table.] How many 
marbles did he have at the beginning of the game? Could you show this on paper/on your 
table? [Waiting for children to show something on paper/on the table.]”.

Each child was presented with six additive problems taken from Vergnaud’s (1982) work 
(see Table 1). Of the six problems three were STS and three were TTT. The three pro-
blems for each category were each from a different subcategory. Namely, we presented 
students with problems of the form: find a, knowing b and c; find b, knowing a and c; and 
find c, knowing a and b for both STS and TTT. We used both positive, negative, and oppo-
site signed problems. Our goal in using a variety of problems was to see if students’ use 
of tables varied or remained consistent across problem types.

It is typical for students in the US in Grades 1-3 to be introduced to tables as a way to 
organize data. TTT type problems are typically not introduced in mathematics curricu-
lum in the US. The STS problems served as a sort of baseline, in which students were 
likely to be successful, and the TTT type as a new environment in which students may or 
may not be able to solve the problem. We present the problems in Table 1 and a descrip-
tion of the problems in Table 2.

We designed three representational contexts, to which children were randomly assigned. 
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At each grade level:

•	 one third of children used plain paper and pencil; 
•	 one third of children used unlabeled tables (i.e., a blank 4×2 grid; see Figures 4 
and 7 in the a priori analysis);
•	 one third of children used labeled tables (i.e., a 4×2 grid with the following 
labels in the left cell in each one of the four rows: “Start,” “First Round,” “Second 
Round,” and “End;” see Figures 5 and 8 in the a priori analysis).

Table 1. – Problems presented to children in this study

Problem Number Description

1
Pedro has 6 marbles. He plays one round of 
marbles and loses 4 marbles. How many marbles 
does he have at the end of the game?

2
Pablo plays two rounds in a game of marbles. In the 
first round he wins 5 marbles. In the second round, 
he loses 3 marbles. What happened in the game?

3
Bernardo plays marbles. He loses 7 marbles. At 
the end of the game, he has 3 marbles. How many 
marbles did he have at the beginning of the game?

4
Claudio has 5 marbles. He plays a round and after 
he finishes playing he has 9 marbles. What happe-
ned during the game?

5

Cristian plays two rounds of marbles. In the first 
round he wins 5 marbles. Then he plays a second 
round. At the end of the game he has won 9 
marbles. What happened during the second round?

6

Bruno plays two rounds of marbles. He plays the 
first round, and then after, the second round he 
loses 7 marbles. After the two rounds, he has won 
3 marbles in total. What happened during the first 
round of the game?

Problems were presented in the same order for each participant.

Each child first solved Problems 1 (STS) and 2 (TTT) from Table 1 orally, with no paper or 
pencil or any kind of written support. They were then presented with the rest of the pro-
blems in a single representational context to which they had been previously, randomly 
assigned. We presented each student with the first two problems to have baseline data on 
their ability to solve STS and TTT problems of the same form (i.e., find c, knowing a and 
b) without any support. Participants then proceeded to solve the remaining problems in 
their assigned context. This design allowed us to compare within students (e.g., how one 
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student does orally versus with an unlabeled table) and across students (e.g., most stu-
dents were able to make the unknown explicit when using a labeled table). All children 
were presented with the problems in Table 1 in the same order. There were a total of 180 
written responses provided by students (45 students × 4 problems each using a represen-
tational context).

Table 2. – Characteristics of problems presented to children in this study

Problem
Category  
(Vergnaud, 1982)

Problem equation Subcategory 
(Vergnaud, 1982)

1
STS (solve orally, 
no pencil & paper)

6 – 4 = (2) find c, knowing a and b

2
TTT (solve orally, 
no pencil & paper)

5 – 3 = (2) find c, knowing a and b

3 STS (10) – 7 = 3 find a, knowing b and c

4 STS 5(+4) = 9 find b, knowing a and c

5 TTT 5(+4) = 9 find b, knowing a and c

6 TTT (+10) – 7 = 3 find a, knowing b and c

Terms between parentheses in the equations representing the problems  
are the responses requested from the children.

A priori analysis

Figure 3. – Four hypothesized strategies for solving Problem 3 (STS,  
negative transformation, question about initial state) in a paper and pencil context
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As part of our a priori analysis, we considered ways students might respond to the pro-
blems. Our goal here was to make sense of the different problem contexts and how they 
may or may not support students. Here we present the a priori analysis for Problems 3 and 
5. We selected these two problems because each student solved them in one of the three 
representational contexts, versus Problems 1 and 2, which are only solved orally. We 
selected two problems because we wanted one each of the two types of problems: STS 
and TTT. Figure 3 shows four hypothesized student responses to Problem 3 (see Tables 1 
and 2) in the paper and pencil context. Figure 4 shows hypothesized student responses in 
the unlabeled table context. The way we intended them to use tables is shown in the third 
strategy shown in Figure 4, but there are many ways in addition to what is shown that 
students could use tables to organize their responses.

Figure 4. – Three hypothesized strategies for solving Problem 3 (STS,  
negative transformation, question about initial state) in the unlabeled table context
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Lastly, Figure 5 shows how we hypothesized students might use the labeled table to solve 
Problem 3. Of course, there are other ways students may have used the table, but we 
did not anticipate as much variation in this context as we did in the paper and pencil 
and unlabeled table contexts because this context is more structured and provides less 
flexibility.

Figure 5. – One hypothesized strategy for solving Problem 3 (STS,  
negative transformation, question about initial state) in the labeled table context

We conducted the same analysis for Problem 5 (TTT). Figure 6 shows how students 
might respond to the problem in a paper and pencil context. The example that uses a 
number line is a combination of a number line focused strategy and a strategy that uses 
the bar model (Kaur, 2019).

Figure 6. – Four hypothesized strategies for solving Problem 5 (TTT,  
positive composed transformation, question about one transformation)  

in a paper and pencil context
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Figure 7 shows how students might solve Problem 5 in an unlabeled table context. Here 
we show one response that is incorrect (“14”), in which the student incorrectly added the 
marbles won in the first round and the total marbles in the end.

Figure 7. – Three hypothesized strategies for solving Problem 5 (TTT,  
positive composed transformation, question about one transformation)  

in an unlabeled table context
Note the accuracy of these responses varies.

Figure 8 shows a hypothetical student’s response to Problem 5 in the labeled table context. 
As with Problem 3, we hypothesized more variety in how students solved these problems 
in a less structured context, such as paper and pencil. On the other hand, if students used 
a labeled table, which is more structured, we did not hypothesize as much variety in the 
way they showed their solution.
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Figure 8. – One hypothesized strategy for solving Problem 5 (TTT, positive com-
posed transformation, question about one transformation) in a labeled table context

Data analysis
We transcribed all interviews. Our analyses were focused on children’s written produc-
tions and the interview transcripts. We regularly reviewed videos as needed. All problems 
were analyzed for correctness according to an answer key. Percentages and frequencies 
of correct and incorrect responses for each problem and representational context were 
calculated, and all data were recorded in a table, organized by grade, representational 
context, problem category, and student. Below, in the Results section, we also share exa-
mples of two Grade 1 students’ responses and two Grade 2 students’ responses and des-
cribe what their representations might indicate about how they understand the problems.

Results
We begin by reporting on correct and incorrect responses across the different represen-
tational contexts as background to then report on the different aspects of the represen-
tations produced by children and to explore our research question. Table 3 displays the 
number of correct responses and the percentage of correct responses.

As expected (Brizuela & Alvarado, 2010) and reported by Vergnaud (1982), more child-
ren solved STS problems correctly than TTT problems, and the proportion of correct 
responses for both problem categories increased with children’s age. That is, we found 
that the percentage of correct responses was higher for STS problems in general, and that, 
in general, the percentage of correct responses was higher among Grades 2 and 3 children 
compared to Grade 1 children.
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Table 3. – Percentage and number of correct responses

Group
STS TTT

Grades
1 2 3 1 2 3

Paper  
and pencil

oral pre-
sentation

67 (6) 100 (4) 100 (3) 11 (1) 25 (1) 33 (1)

paper  
and pencil

50 (9) 75 (6) 67 (4) 33 (6) 38 (3) 50 (3)

Unlabeled 
table

oral pre-
sentation

83 (5) 100 (3) 100 (4) 0 (0) 33 (1) 25 (1)

unlabeled 
table

67 (8) 83 (5) 100 (8) 25 (3) 50 (3) 63 (5)

Labeled 
table

oral pre-
sentation

71 (5) 100 (5) 100 (4) 29 (2) 0 (0) 0 (0)

labeled 
table

29 (4) 100 (10) 75 (6) 0 (0) 60 (6) 75 (6)

As an example, the percentage reported in the first cell of Table 3 (Grade 1, oral presenta-
tion) is calculated by multiplying the number of times a Grade 1 student correctly answe-
red a STS problem orally (6) by 100, divided by the total number of responses provided 
by Grade 1 students in that category of problem (9). The number in parentheses in each 
cell is the number of participants in that grade multiplied by the number of problems they 
answered correctly in each of these problem categories and contexts.

In addition to providing further evidence that is consistent with Vergnaud’s (1982) fin-
dings, Table 3 also compares children’s solutions to problems without any kind of written 
support (i.e., oral presentation) and with written support. We found that, in general, 
for STS problems, the percentage of correct responses was higher when problems were 
solved orally. We recognize the placement of the unknown is different in the two STS 
problems, yet we categorize them together because the underlying structure of the equa-
tion is the same. Interestingly, the same was not true for TTT problems. For these more 
complex problems, the percentage of correct responses was higher when problems were 
solved with some kind of written support. This is consistent with findings reported in 
Brizuela and Alvarado (2010).

Furthermore, we notice in Table 3 that in every single case, the proportion of correct res-
ponses was higher when children were able to use a table, instead of just paper and pencil. 
In addition, the proportion of correct responses was higher when children were able to 
use an unlabeled table in only two cases: for both STS and TTT problems, only among 
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Grade 1 children. In all other cases, for children in Grades 2 and 3, the higher proportion 
of correct responses was associated with the use of labeled tables. Our interpretation of 
these differences is that Grade 1 children were not able to fully interact with the labels on 
the tables due to their still emerging literacy skills. These results highlight a relationship 
between the type of problem and the specific type of representation that facilitates solving 
a problem. We elaborate on this point in the discussion.

Representations of unknown quantities
The results of our study also highlight that some representations are more frequently 
associated with children making unknown quantities explicit in their productions (e.g., 
by writing “?”). Table 4 shows that in 14 of the 180 written responses produced by child-
ren (7.8%), they made the unknown in the problem explicit in some way. Even though 
these frequencies are very small, it is interesting to focus on some of the patterns that are 
reflected in the data.

Table 4. – Number of solutions making the unknown in the problem  
explicit in some way

Group
STS TTT

Grades
1 2 3 1 2 3

Paper  
and pencil

0 0 0 0 1 1

Unlabeled 
table

0 1 2 2 0 2

Labeled 
table

0 2 1 0 1 1

Total 6 8

For STS problems, only Grades 2 and 3 children made the unknown explicit, and only in 
the unlabeled and labeled tables context. For TTT problems, children in all three grade 
levels made the unknown explicit, and children in Grades 2 and 3 made the unknown 
explicit both when using tables as well as when using plain paper and pencil. However, 
the tables context is the only one in which Grade 1 children made the unknown explicit 
for TTT problems.

Across both categories of problems, among the older, Grades 2 and 3 children, there were 
more occurrences of making the unknown explicit in the tables context. This leads us to 
ask ourselves: did the structure of the tables facilitate an explicit attention to the unknown in the 
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problem? Additionally, making the unknown explicit was somewhat more frequent in TTT 
problems than in STS problems, which leads us to wonder: did problems of more complexity 
facilitate an explicit attention to the unknown in the problem? While the frequency of this type 
of response was very low, when we consider the broader context of what the research lite-
rature has described regarding middle school students’ work in algebra and the difficulties 
that have been documented in their use of symbols to represent unknowns and variables 
(Bednarz, 2001; Bednarz & Janvier, 1996; Booth, 1984; Küchemann, 1981; Vergnaud, 
1985; Wagner, 1981), what these young children expressed in their written work is quite 
remarkable. There is a large body of research demonstrating how young children can 
use variety of notation to represent unknown quantities; these studies involve classroom 
teaching experiments and interventions that are carefully designed to support students in 
using variables (Blanton et al., 2015; Brizuela et al., 2015; Ventura et al., 2021). However, 
this is not the case in our study, which only involved individual interviews, with no ins-
tructional intervention.

Mary, a Grade 1 student, provides us with an example of a response that explicitly attends 
to the unknown in the problem. In the two STS problems for which she was first given 
an unlabeled table to work with, Mary distributed the different quantities referred to in 
the problems in different cells and used another cell to set up the expressions she used to 
solve both problems. For Problem 3, which could be algebraically expressed as x – 7 = 3, 
she first wrote “– 7” in the top left cell and then 3 and drew three marbles on the top right 
cell (Figure 9, left). She then wrote 7 + 3 = 10, and stated that Bernardo started the game 
with 10 marbles. For Problem 4, which could be expressed algebraically as 5 + x = 9, 
Mary wrote the numbers corresponding to the stated amounts in different cells, as well as 
drawing the appropriate number of marbles next to the numerals (Figure 9, right). Below 
this, she wrote 4 + 5 = 9 and stated that Claudio won 4 marbles during the marbles game.

Figure 9. – Mary’s written work on problem 3 (STS, negative transformation,  
question about initial state, x – 7 = 3; left) and problem 4 (STS, positive  

transformation, question about the transformation, 5 + x = 9; right)



RDM 44(2) • 2024

106

When presented with TTT problems 5 and 6, Mary shifted to making explicit the unknown 
in the problems, as shown in Figure 10. In problem 5, the problem stated the first trans-
formation of marbles (+ 5) as well as the global transformation (+ 9). What happened 
in the second round is unknown. Mary represented this by writing a question mark (see 
Figure 10, left) next to “2nd” (for the second round). Once the whole problem was read, 
Mary wrote in the answer to the problem, 4 marbles, next to the question mark.

In problem 6, her response was similar. This time, the unknown amount was what had 
happened in the first round of the marbles game. Once again, Mary wrote a question 
mark (see Figure 10, right) next to “1st” (for first round). After the rest of the problem 
had been read out loud to her, she came back to this first cell, wrote in the answer (10), 
and connected the numeral with the question mark using an arrow (as if saying: 10 is the 
unknown amount, these two quantities—the unknown quantity and the quantity ten—
are connected).

Figure 10. – Mary’s written work on problem 5 (TTT, question about  
one transformation 5 + y = 9; left) and problem 6 (TTT, question about  

one transformation y – 7 = 3; right)

Mary’s case illustrates, in reference to the above questions, that tables may facilitate an 
explicit attention to the unknown in the problem. Additionally, her case also illustrates 
that TTT problems could facilitate an explicit attention to the unknown in the problem. 
However, it may also be that her increasing familiarity with the type of problem presented 
to her prompted her to begin to focus on the types of quantities involved in the problem.
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Making states and transformations explicit
Table 5 shows that in 59 of the 180 written responses (33%) produced by children, they 
made the state and/or transformation explicit with a word, letter, or symbol (e.g., by 
writing “has,” “got,” or “lost”).

Table 5. – Frequency of responses that made the state and/or transformation 
explicit with a word, letter, or symbol

Group
STS TTT

Grades
1 2 3 1 2 3

Paper  
and pencil

1 1 4 3 5 3

Unlabeled 
table

6 2 1 4 3 1

Labeled 
table

3 5 3 5 7 2

Total 26 33

For both STS and TTT problems, explicit representation of the state or transformation was 
more frequent in the tables representational context. That is, when provided with tables, 
children not only made explicit unknown quantities present in the problems, but they also 
made the state and/or transformations involved in the problem explicit in some way. For 
STS problems, this was true across both types of tables (with or without labels); for TTT 
problems, this was true more often for labeled tables.

Grades 1 and 2 students were more likely to make the state and/or transformation expli-
cit for TTT problems, and when using both types of tables. Among Grade 3 students, the 
picture is a little different. These children tended to make the state and/or transformation 
explicit evenly across both types of problems, as well as when using both plain paper and 
pencil and when using both kinds of tables.

The results presented in Table 5 raise again the following question: did the structure of 
the tables facilitate an explicit attention to the type of quantity in the problem (i.e., state 
and/or transformation)? In addition, especially for Grades 1 and 2 children, our results 
also make us wonder if problems of more complexity facilitated an explicit attention to 
the type of quantity in the problem (i.e., state and/or transformation).

We highlight a few examples from the children’s written productions to illustrate the 
ways in which they made the state and/or transformation in a problem explicit. First, we 
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show the work of two Grade 1 students on problem 3 (expressed algebraically as x – 7 = 
3). Clara solved the problem correctly (Figure 11), and in doing so, she carefully made 
sure to notate that 7 was the quantity of marbles that had been “lost” in the first round of 
the game, and in the end 3 marbles is how many marbles Bernardo “has.” Her representa-
tion makes a lot of sense: had she not notated what the 7 and 3 referred to, she may have 
ended up carrying out an arithmetical operation that may have been inappropriate for the 
problem at hand.

Figure 11. – Clara’s work on problem 3 (STS, negative transformation,  
question about initial state, x – 7 = 3)

Callie, also in Grade 1, represented the same problem in a similar way (Figure 12). Since 
she worked in the unlabeled table condition, she did not have the structure to detail 
the different steps in the problem. Still, Callie detailed the types of quantities, or trans-
formations that occur in the problem, in the same way that Clara had (Figure 11), by 
indicating that in the marbles game, 7 marbles have been “lost” and that in the end (this 
remains implicit in her representations) Bernardo “has” 3 marbles. Callie did not produce 
a written representation for the solution to the problem, providing the answer “he started 
with 10 marbles” orally.

Figure 12. – Callie’s work on problem 3 (STS, negative transformation,  
initial state, x – 7 = 3)
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Next, we focus on two Grade 2 children working on problem 4, also a STS problem. This 
problem can be expressed algebraically as 5 + x = 9. Ezra used letters to indicate the state 
at each step in the problem, with the support of the structure of the labeled table he was 
given. He indicated with an “h” the amount of marbles that Claudio “has” at the start of 
the game. He did not highlight a transformation or state for the amount of marbles that 
Claudio had at the end of the game, 9. We assume, therefore, that Ezra was using the label 
of the table he was given to be able to highlight and qualify what 9 was referring to. He 
gave the solution to the problem as 4, adding a “g” for “got.” Therefore, unlike Clara, in 
Figure 11, who just made a representation with the solution to the problem, placing the 
number 10 in the appropriate cell, Ezra highlighted that the solution to problem 4 was 
not only 4, but that 4 was the quantity of marbles that Claudio “got” during the marbles 
game (see Figure 13).

Figure 13. – Ezra’s work on problem 4 (STS, looking for the transformation  
5 + x = 9)

First line, Ezra wrote h 5, second line: g 4, fourth line: 9.

Our last example is that of Connor, also a Grade 2 student, working on problem 4 (Figure 
14). In his work, Connor made a representation in the first cell indicating that at the start 
of the marble game Claudio had 5 marbles. As the problem was read to him, he made 
a representation in the last cell, indicating that at the end of the marbles game Claudio 
“has” 9 marbles. Connor’s solution to the problem was that during the game Claudio got 
4 marbles. However, he was subtle in the way in which he expressed this in his written 
response. He wrote “got 2” for both “First Round” and “Second Round”—which together 
account for the total of “got 4.” Our interpretation of his response is that he found a way 
for his response (got 4 marbles) to match the structure of the table, in which he had the 
opportunity to state what happened in two different possible rounds of the game. While 
the final quantitative solution is the same, we speculate that the structure of the table 
created a scaffold for Connor to think about the problem, providing further evidence for 
our argument that some representations facilitate an explicit attention to types of quan-
tities and the structure of the problem. We recognize that what is a scaffold for Connor 
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might also be a challenge for other students. That is, they might not know how to use the 
“second round” cell of the table.

Figure 14. – Connor’s work on problem 4 (STS, transformation of states  
looking for the transformation 5 + x = 9)

Discussion and conclusions
We set out this exploratory study to respond to the research question: in what ways do 
tables influence young students’ (Grades 1-3; ages 6-8) accuracy and ability to work with 
additive problems including identifying unknowns and components of the problems? We 
highlight three findings from this study that relate to this research question.

Problem context and representational tools shape students’ thinking
First, our data emphasize that what children can do depends on the context of the pro-
blem and the tools available to them. The study we just presented, and the children we 
showcased, illustrate just how futile it would be to try to characterize their understan-
dings as unitary and uniform entities. Instead, their responses are highly contextual—
specifically, as shown in this paper, they depend on the kinds of representations they use 
when solving problems. In this way, our data support the framing of tables as not having 
attributes that are affordances of their own, rather the affordances lie in the interaction 
between the student, the table, and the problem context (Greeno, 1994).

Such a conclusion may suggest that our findings are ungeneralizable and thus, a shortco-
ming of our study, but we view this as a key takeaway. That is, we highlight that our 
findings have illuminated some of the nuanced and specific ways that students use tables 
to support their thinking about additive structures. For example, in our study we obser-
ved differences between the ways the Grade 1 students used tables as compared to the 
Grades 2 and 3 students. Perhaps the added experience of using and writing words to 
label objects made the latter students more apt to use labeled tables productively.
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We also observed students using the table to influence their interpretation of the pro-
blem context. For example, Connor, whose work is shown in Figure 14, organized the 
components of the problem into each cell of the table. The structure of the table (with 
four rows) led the student to a particular solution that resulted in filling in all four cells. 
This adaptation highlights that students’ solutions are a result of their interpretation of 
the problem context and the tools available to them. We see this in Connor’s use of the 
representation and assume that because the table had four rows, he concluded that there 
must be four quantities (two states and two unknowns). Connor’s way of representing 
the problem highlights that students’ solutions are a result of their interpretation of the 
problem context and the tools available to them.

Our observations of Connor’s experience highlight the value in understanding how diffe-
rent representations highlight different aspects of the problem context. For example, a 
solution or representation that would call attention to the relationships between the quan-
tities, such as the bar model (Kaur, 2019), may have better suited the problem context 
and supported Connor’s thinking.

Tables support some additive problem solving
Second, our data illustrate how tables might help children with some additive problems, 
but not necessarily with every additive problem. While being able to use some kind of 
written support led to higher rates of correct responses than just an oral context with no 
representational supports, in our study the increased structure of the tables (both labeled 
and unlabeled) was associated with even higher rates of correct responses. Despite a small 
sample size, we argue that this is noteworthy because furthermore, the more complex the 
problem was (in our case, composition of transformation problems), the more likely it 
was that the greater structure of the tables led to correct responses among the children. 
Our results suggest that had the students in Vergnaud’s study (1982) been provided with 
written supports, the results he obtained may have been quite different.

While we found in our study that the more structured tools for representing were most 
helpful when solving the more complex problems, these same tools (labelled tables) were 
not necessarily as helpful when it came to more simple problems such as transformation 
between two states. For less complex problems, written supports seemed to get in the 
way of successfully solving a problem. For more complex problems, the more structured 
written support provided by a labeled table was more helpful than an oral approach to the 
problem as well as more helpful than the less structured plain paper and pencil context. 
We observe that in a small sample, so we cannot claim these trends will always hold true. 
But it do provide a partial answer to our research question: written supports in general, 
and tables specifically, are associated with a higher frequency of correct responses in this 
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study. Furthermore, this is especially true for more complex problems such as composi-
tion of transformations.

These findings build on Vergnaud (1982) and Vergnaud and Durand (1976) by further 
confirming the differences of complexity between STS and TTT problems, but also add 
to the literature on children’s additive structures by providing a more nuanced view of the 
delicate interaction between the complexity of these problems and the specific types of 
representations that might be most helpful to solve these different problems.

Certain representations highlight certain aspects of additive rela-
tionships
The third finding we emphasize is that some tools for representing facilitate an explicit 
attention to types of quantities and the structure of the problem. This was already illus-
trated by Brizuela and Alvarado (2010), with their case study of a Grade 1 student, who 
made her own tables and made explicit the types of quantities that were involved and 
the different steps in the problem. Similarly, we have shown that an affordance of tables, 
as opposed to plain paper and pencil, is that children can use them to make unknowns, 
states, transformations and types of quantities explicit. However, more structured tools 
for representing, such as tables, also seem to be more helpful for more complex pro-
blems, while paper and pencil is helpful enough for more simple problems.

Consider Mary, the Grade 1 student who applied the same strategy to solving the STS and 
TTT problems with no paper or pencil or written support, but used different strategies 
for the two types of problems in the table context. Specifically, when presented with 
composition of transformations problems, Mary shifted to making explicit the unknown 
in the way she represented the problems in a table.

We see here how students can use tables to distinguish components in a way that aligns 
with the operational paradigm (Polotskaia & Savard, 2018) versus the relational paradigm, 
which would involve highlighting the relationships between quantities, not the quantities 
themselves (see Kaur, 2019 for one example). This finding highlights how certain repre-
sentations allow children opportunities to focus on nuances of the problems—such as 
the presence of unknown quantities, and the specific kinds of transformations that are 
brought up—more than others.

In terms of our theoretical framework, the evidence we have presented lends support to 
Vergnaud’s (1982) criteria for symbolic representations: in the case of composition of 
transformations problems, correct responses were more likely when children were able 
to use some kind of representational tool (e.g., paper and pencil or a table). It supports 
the idea that representing can play an important role in solving problems, amplifying 
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thinking by facilitating children’s solving of problems that might otherwise be out of their 
reach. The fact that making explicit the unknown, the type of quantity, and the step in 
the problem was more likely to occur in the tables context provides some initial insights 
into the idea that being able to structure information and data in specific formats, such 
as tables, can have a positive impact on the understanding of a problem. However, our 
exploratory study also adds nuance to this framework, by illustrating that tables are not 
automatically amplifying or helpful—their role is tightly connected to the specificities of 
the problem, of the task, and of the representation itself.

The implications of this exploratory study are relevant to mathematics education at the 
early childhood and elementary school levels. First of all, our results suggest that there is 
a great need to integrate representational tools into all educational activities, as called for 
by Martí (2009). We focus on tables because for most students they are already part of the 
elementary mathematics curriculum and ubiquitous in everyday life. Other representa-
tions, such as the bar model, are new to most students. Thus, we first aim to understand 
the role of this existing, broadly used representation.

In addition, there is a great need to pay attention to the ways in which tables might be 
more or less helpful for specific kinds of problems. We cannot make blanket statements, 
generalizations, or recommendations about tables. However, we can make the assumption 
that using tables as tools to represent, seems to help children solve problems in a more 
productive way. For instance, even the seemingly simple unlabeled table provides some 
structure for the child, allowing them to assume that information should be organized 
in some way. The representational space presented to them through the unlabeled table 
helps them to focus and perhaps ask themselves, “what should or could I put in each one 
of these empty spaces [i.e., the cells]?” Our data also suggest that an early exposure and 
familiarity with tables might facilitate children’s work on multi-step problems and might 
help them to attend to the underlying structure of problems.

Our exploratory study should be followed up with others that involve a larger sample 
and perhaps other types of representations, such as bar diagrams or number lines, as well 
as different levels of problem complexity, beyond Vergnaud’s (1982) types of problems. 
However, in spite of these limitations, we were able to observe interesting differences 
across types of representations and types of problems that are important to attend to and 
follow up with further research.
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